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Summary. We examine a discrete-time aggregative model of discounted dynamic 
optimization where the felicity function depends on both consumption and capital 
stock. The need for studying such models has been stressed in the theory of optimal 
growth and also in the economics of natural resources. We identify conditions under 
which the optimal program is monotone. In our framework, the optimal program 
can exhibit cyclic behavior for all discount factors close to one. We also present an 
example to show that our model can exhibit optimal behavior which is chaotic in 
both topological and ergodic senses. 

1. Introduction 

In this paper, we examine a discrete-time aggregative model of discounted dynamic 
optimization where the felicity function depends on both consumption and capital 
stock. The need for studying such a model has been stressed in the theory of optimal 
growth and also in the economics of natural resources. 

In his report on a number of studies in optimal economic growth, Koopmans 
(1967, p. 2) observed: "In all of the models considered it is assumed that the objective 
of economic growth depends exclusively on the path of consumption as foreseen for 
the future. That is, the capital stock is not regarded as an end in itself, or as a means 
to end other than consumption. We have already taken a step away from reality by 
making this assumption. A large and flexible capital stock has considerable 
importance for what is usually somewhat inadequately called "defense". The capital 
stock also helps to meet the cost of retaining all aspects of national sovereignty and 
power in a highly interdependent world." Interestingly enough, a continuous-time 
aggregative model in which the objective function is sensitive to both the con- 
sumption stream and to the per capita capital stock ("wealth effect") of the society 
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was analyzed in a paper by Kurz (1968). It was noted there that the presence of 
wealth effects may lead to the appearance of multiple steady states. In fact, two 
numerical examples definitely established the possibility of such a phenomenon 
arising in dynamic optimization models. Some further work on a similar model was 
reported subsequently by Arrow and Kurz (1970). 

In environmental economics, incorporating the direct welfare effects of certain 
types of capital assets [generally referred to as a "stock effect"] is acknowledged to 
be a significant ingredient in formulating appropriate resource policies. Dasgupta 
(1982, p. 107) summarizes the importance of such effects as follows: "As a flow DDT 
is useful in agriculture as an input; as a stock it is hazardous for health. Likewise 
fisheries and aquifers are useful not only for the harvest they provide: as a stock 
they are directly useful, since harvesting and extraction costs are low if stocks are 
large. Likewise, forests are beneficial not only for the flow of timber they can supply: 
as a stock they prevent soil erosion and maintain a genetic pool". To elaborate 
somewhat on the standard model of a commercially exploited fishery (which can be 
viewed as a special case of the aggregative model we study), the harvest is determined 
by a production function depending on the inputs of fishing effort and the stock of 
fish being exploited ("fish biomass"). This leads to a cost function (where cost is 
measured in terms of fishing effort) which depends on the harvest itself as well as 
the fish stock. If benefit from harvest is obtained through a specified revenue function, 
the net benefit or profit function is seen to be dependent on both the harvest and 
the stock of fish. [Clark (1976, Chapter 7) and Dasgupta (1982, Chapters 6, 7) 
develop this model in detail and also examine the nature of optimal harvest policies 
for some specific cases]. 

The aggregative model of optimal intertemporal allocation, in which felicity is 
derived solely from consumption (which is a special case of the model in this paper), 
has of course been studied extensively in the literature under a variety of different 
technological specifications. It is observed there that optimal programs exhibit 
monotone behavior over time. In fact, this feature continues to hold even when the 
technology exhibits increasing returns [see Dechert-Nishimura (1983), Mitra-Ray 
(1984)] and investment is irreversible [see Majumdar-Nermuth (1983)-1. Thus, it is 
often suggested that a one-sector optimal growth model can only display "simple 
dynamics". The present exercise indicates that optimal programs in the aggregative 
model, in the presence of wealth (stock) effects, can exhibit the full spectrum of 
"complex dynamics" studied in the mathematical theory of chaos. 

A few remarks on the relation of this result to those presented in the literature 
might help to put our paper in proper perspective. One of the major developments 
in the last ten years or so, in the area of dynamic economics, has been the identification 
of relatively simple non-linear models in which "cyclical" or "chaotic" outcomes 
are consistent with optimizing behavior over time based on complete information. 
[A number of excellent reviews of this development, from different perspectives, are 
available in Baumol and Benhabib (1989), Day and Pianigiani (1991), Grandmont 
(1985, 1986), Brock and Dechert (1991) and Boldrin and Woodford (1990)]. Much 
of this work has been carried out in the so-called "reduced form" model, in the 
tradition of Gale (1967) and McKenzie (1968). In this version, the principal object 
of interest is the immediate utility generated by a transition from a stock of goods 
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in one period to another stock in the next period. That is, the focus of attention is 
the associated concept of the "reduced-form" utility function, which subsumes both 
the technology set and the welfare function, the "primitives" of the model. [For 
elaboration, see Section 3, especially 3b]. 

In the context of this (reduced form) model, Benhabib and Nishimura (1985) 
identified sufficient conditions for the existence of periodic optimal programs. 
However, commenting on the possibility of chaos in their model, they observed that 
"it is very difficult to construct examples which generate chaotic dynamics for 
infinite-horizon models that have concave utility functions." In subsequent papers, 
Deneckere and Pelikan (1986) and Boldrin and Montruchhio (1986b) provided the 
kind of examples that Benhabib-Nishimura were referring to. In particular, given 
any specified C 2 function Boldrin and Montruchhio (1986b) provided a method of 
constructing a reduced form model, such that the optimal policy function of the 
model would coincide with the pre-specified C z function. [Chaos is exhibited by 
choosing the C 2 function to be the logistic map, for instance]. 

The question naturally arises whether one can specify primitives (technology 
sets and welfare functions) satisfying standard assumptions, which will give rise to 
the reduced-form models constructed in the above exercises. It is clear from the 
above papers that one can specify dynamic optimization models (in terms of 
primitiyes) with two production sectors which generate the corresponding reduced- 
form models exhibiting cyclical [see Benhabib-Nishimura (1985)] and chaotic 
[see Deneckere and Pelikan (1986), Boldrin and Montrucchio (1986b)] optimal 
trajectories. 

The approach taken in this paper is somewhat different from that of the above 
literature. We start with a model of dynamic optimization, specified in terms of 
primitives: the technology set, the welfare function and the discount factor. The 
welfare function is defined on consumption and the capital input stock, because the 
need for capturing such a stock or wealth effect has been repeatedly emphasized in 
the literature (as noted above) in a number of different intertemporal optimization 
problems. Our model is kept simple in every other respect, with the standard 
technological specification of the aggregative model. We are then interested in 
answering the following question: what kinds of dynamic optimal behavior can this 
model exhibit? In answering the question, we make considerable use of the results 
developed for the reduced model; however, our emphasis on the primitives of the 
particular dynamic optimization model we study is the dominant theme through- 
out. 

Our answer to the above question can be conveniently subdivided into three 
parts. First, we indicate briefly [by relying on the analysis of Benhabib-Nishimura 
(1985)] how sufficient conditions on the welfare and production functions can 
be developed to yield a monotone non-decreasing optimal policy function [see 
Section 4a]. We also examine in some detail [in Section 4b] the restrictiveness of 
assumptions which have typically been made directly on the reduced-form model 
to ensure a monotone non-increasing optimal policy function (in the interior of the 
transition possibility set). The implications of such assumptions on the underlying 
welfare and production functions need not be at all transparent, as we proceed to 
show. The methodological point that emerges from this exercise is the need to 
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formalize conditions on the reduced model in terms of justifiable restrictions on the 
primitive data [see Section 4 for details]. 

Second, we show [in Section 5] that our model can exhibit optimal cyclic 
behavior for all discount factors close to one. Clearly, this goes against the spirit of 
turnpike theorems which propose to show that for discount factors sufficiently close 
to one, one has global asymptotic stability of optimal programs with respect to the 
stationary optimal stock. It is, of course, perfectly in harmony with the more general 
result of the subject, namely the "neighborhood turnpike theorem" of McKenzie 
(1982). As the discount factor approaches one, the cycles of optimal programs are 
seen to exhibit smaller amplitude around the stationary optimal stock. 

Third, we construct a suitable example [in Section 6a] to demonstrate that our 
model can exhibit optimal behavior, which is chaotic in the topological and ergodic 
senses. Unlike the literature preceding this paper, we go a step further [in Section 
6b] and enquire whether the (demonstrated) chaotic behavior is robust to small 
perturbations of the "economy", specified in terms of the primitives (the production 
and welfare functions and the discount factor). We show that topological chaos is 
robust to such perturbations by demonstrating that the optimal policy function of 
each "neighboring" economy satisfes the Li-Yorke condition. 

2. Basic results from the theory of dynamical systems 

A dynamical system is described by a pair (X, h), where X is a set (called the state 
space), and h a function from X to X describing the law of  motion of the state variable, 
x ~ X .  Thus, if x t s X  is the state of the system in period t, then x t + 1 = h(xt)~ X is the 
state of the system in period (t + 1). We will be concerned, in what follows, with 
dynamical systems for which X is an interval of the real line. 

Given a dynamical system (X, h), and any x ~ X ,  we define h~ = x, and for any 
integer k _> 1 

hk(x) = h(h k-  l(x)) 

A point x e X  is called periodic if there is k >_ 2 such that hk(x) = x. The smallest such 
k, call it k, is the period ofx. [In this case, the sequence {hJ(x)}~ ~ is also called periodic 
with period k]. We denote the set of periodic points in X by P(X). Its complement 
in X, the set of non-periodic points, is denoted by N(X).  

A basic result characterizing the behavior of the dynamical system (X, h) has 
been given by Li and Yorke (1975), and may be stated as follows. 

Theorem 2.1 
Let ~, fl be in ~ ,  with c~ < ft. Suppose X = [0~, ~] and h :X  ~ X is continuous. I f  

there is x * e X  such that 

h3(x *) _< x* < h(x*) < h2(x *) (L-Y) 

then 

( i )  for  every integer k > 2, there is a periodic point x k ~ X  with period k; 
( i i)  there is an uncountable set W c N(X)  satisfying the following conditions: 



Optimal growth with wealth effects 653 

( a ) I f  x, y s W with x r y, then lim [ hk(  x ) - -  hk( y) [ > O; lim [ hk( x ) - -  hk( y) l = O. 

(b  ) l f  x~  W and yeP(X) ,  then lim [hk(x) -- hk(y)[ > 0. 
k--+ oo 

REMARKS: 
(l) The result (i) is actually a consequence of Sarkovskii's theorem (see Devaney 

[1989]). 
(2) According to (ii)(a), there are pairs of initial states (in W) such that the sequences 

of iterates move apart and return close to each other infinitely often. Further- 
more, as (ii)(b) states, if the initial state is in the set W, then the system does not 
converge to any periodic point. 

We will say that the dynamical system (X, h) exhibits topological chaos if 
conditions (i) and (ii) of Theorem 2.1 are satisfied. The Li-Yorke condition (L-Y) 
can be seen as an easily verifiable sufficient condition for topological chaos. 

It has been argued that topological chaos may be "unobservable" since the 
uncountable set W in (ii) of Theorem 2.1 may have Lebesgue measure zero [see, for 
example, Collet and Eckmann (1980), Day and Shafer (1987) for discussions]. This 
motivates the study of"ergodic chaos" which we turn to next. 

Let/~ denote the Lebesgue measure on X (endowed with its Borel a-algebra). 
We will say that the dynamical system (X, h) exhibits ergodic chaos if there exists a 
probability measure v satisfying the following conditions: 

(i) v is absolutely continuous with respect to the Lebesgue measure on X; that is, 
if B is a Borel set in X, and/z(B) = 0 then v(B) = 0; 

(ii) v is invariant under the action of h; that is, v(h-  I(B)) = v(B) for every Borel set 
B c X ;  

(iii) v is ergodic; that is, for every v-integrable real valued function, ~b (on X), we have 
T 

lira (l/T) ~ r 1 6 2  for v -  a.e. x e X .  
T~cc k = l  

Condition (iii) above is frequently referred to as: time averages equal space 
averages. If v is the unique probability measure which satisfies (i)-(iii) above, it is 
called the erffodic measure of h. 

If(X, h) has an ergodic measure v, then for v - a.e. x ~ X  (and hence, by (i), for x 
belonging to a subset of X with positive Lebesgue measure) the sequence of iterates 
{hk(x)} will "fill up" the support of the measure v, and as a consequence, will have 
extremely complicated trajectories. 

In order to provide sufficient conditions for ergodic chaos, we introduce the 
notion of a Schwarzian derivative [see Devaney (1989) for a more extensive 
discussion]. Consider a dynamical system (X, h) with h : X ~ X  of class C a. The 
Schwarzian derivative Sh (x) is given by 

Sh (x) = [h'"(x)/h'(x) ] - (3/2) [h"(x)/h'(x) ] 2 

for x e X  with h'(x) :~ O. 
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Theorem 2.2: 
Let ~, ~ be in ~ with ~ < ~, Suppose X = [~, ~] and h:X --, X satisfy the followin9 

conditions: 
( i ) h is of class C 3, and there exists x*~(ct, ~) such that h'(x*)= 0 and h"(x*) < O; 

h'(x) > O for all xEX  with x < x*; h'(x) < O for all x ~ X  with x > x*. 
(ii) h(x)> x for all xe(~,x*); h(x*)e(x*,[l]; and Sh(x)<0 for all x e X  except 

X~- .X  *. 

(iii) There exists k >_ 2 such that y = h~(x *) satisfies h(y) = y and Ih'(y)l > 1. 
Then (X, h) exhibits ergodic chaos. 

A detailed discussion of Theorem 2.2 may be found in Grandmont (1986) and 
Day and Pianigiani (1991). 

Recall from the definition of topological chaos for a dynamical system (X, h), 
that condition (ii) indicates a certain "sensitive" dependence on initial conditions. 
Roughly speaking, the extent of this sensitive dependence is measured by the 
Lyapunov exponent, which we turn to next. 

Let (X, h) be a dynamical system, with h:X ~ X of class C 1. For any Xo ~ X, the 
Lyapunov exponent, 2(Xo), is defined as 

2(Xo) = lira (l/k)In dhk (Xo) 
k~Qo dx  

For sufficiently large k and small e > 0, the Lyapunov exponent "approximately 
satisfies" 

eek~x~ ,~ [hk(xo + e) -- h(xo)[ 

The right-hand side indicates how far apart Xo and Xo + e are under k iterates of h. 
When 2(Xo) > 0, initially nearby points are stretched (by the successive iterations of 
h) at a positive exponential rate. [Further discussion of the Lyapunov exponent can 
be found in Rasband (1990)]. 

One of the most celebrated examples of a dynamical system (X, h) is one where 
X = [0, 1] and 

h(x) = 4x(1 - x) for all x ~ X  

It is not difficult to verify that for this example, Theorems 2.1 and 2.2 apply directly. 

[For Theorem 2.1, choose x* = [ x / ~ -  1]/2,,/2 to verify the Li-Yorke condition 
(L-Y). For Theorem 2.2, choose x* = (1/2), and note that the Schwarzian derivative 
Sh(x)= - 6/(1 - 2x) z for all x # (1/2), to verify (i) and (ii); further (iii) is verified by 
choosing k = 2]. Thus, this dynamical system exhibits both topological and ergodic 
chaos. 

The density Q(x) of the ergodic measure of this dynamical system has been 
computed. It is given by 

Q ( x ) = [ r c x / ~ -  x)] -1 f o r 0 < x <  1 

[See Day and Pianigiani (1991) for more on this computation, due to Ulam and 
von Neumann]. The Lyapunov exponent of this dynamical system is in fact seen to 
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be independent  of  xoeX,  and is given by 

2 = 2(Xo) = In2 > 0 for all xo ~X  

3. Preliminary aspects of the optimization framework 

3a. The model 

We consider an aggregat ive model,  specified by a production function, f :  ~ + ~ Jl+, 
a welfare function, w:~2+ ~ + ,  and a discount factor 6~(0, 1). 

The  following assumpt ions  on f are used: 

(F.1) f (0)  = 0; f is continuous on ~/+. 
( F.2 ) f is non-decreasing and concave on ~t + . 
(F.3) There is some K > 0 such that f (x )  > x when 0 < x < K, and f (x )  < x when 
x > K .  

We define a set ~2 c ~z+ as follows: 

/2 = {(x, z)e~2+ :z _< f (x )}  

The  following assumpt ions  on w are used: 

(W.1) w(x, e) is continuous on ~2+. 
(W.2)  w(x, c) is non-decreasing in x given c, and non-decreasing in c, given x on ~t2+. 

Furthermore, if x > O, w(x, c) is strictly increasing in c on [2. 
(W.3)  w(x,c) is concave on ~2  Furthermore, if x > O, w(x,c) is strictly concave in + ,  

c on f2. 

A program f rom x > 0 is a sequence {xt}~ satisfying 

Xo=X,  0 < X t + l < f ( x 0  f o r t > 0  

The consumption sequence {c t +1}~ is given by 

c , + l = f ( x , ) - x ~ + l  f o r t > 0  

It  is easy to verify tha t  for any p r o g r a m  {x~}~ ~ f rom x > 0, we have x,, c~ + 1 < K(x) - 
max  (K, x) for t > 0. [ In  part icular,  if x ~ [0, K] ,  then x~, ct + 1 < K for t > 0.] 

A p r o g r a m  {2,}~ f rom x > 0 is optimal if 
oo oo 

t = O  t = O  

for every p r o g r a m  {xt}~ f rom x. 
A p r o g r a m  {xt} ~ f rom x is stationary if x, = x for t > 0. I t  is a stationary optimal 

program if it is also an op t imal  p r o g r a m  from x. In this case, x is called a stationary 
optimal stock. [No te  that  0 is a s ta t ionary  opt imal  stock].  A s ta t ionary  opt imal  
stock, x, is non-trivial if x > 0. 

3b. Conversion to reduced form 

The model,  described in the previous subsection, (which we will call the "primit ive 
form") can be conver ted  to the so-called "reduced form". In reduced form, an inter- 
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temporal framework is described by a state space, a transition possibility set, a 
(reduced form) utility function defined on this set, and a discount factor. 

The state space for our purpose will be taken to be ~ +, and we will think of the 
input (x) as the state variable. The transition possibility set then describes pairs of 
input levels (x, z), such that if x is the input level today (at t), then it is possible to 
go to the input level z tomorrow (at (t + 1)). The utility function then measures the 
welfare obtained in moving from x today to z tomorrow. 

Now, we describe how our framework in primitive form can be viewed as a 
special case of the reduced form model. Note t ha t  .(2, as defined in Section 2a, 
precisely describes the transition possibility set. The utility function u:t2 ~ ~+  can 
be defined by 

u(x, z) = w(x, f (x) - z) 

Under the assumptions (F.1)-(F.3) on the production function f,  the transition 
possibility set s satisfies the following properties: 

(f~.l) (0,0)~12; (0,z)~s implies z = 0. 
(f~.2) 12 is a closed, convex.subset of ~ z .  
(f~.3) I f (x ,  z)EI2 and x' >_ x and 0 < z' < z, then (x', z')El2. 
(f~.4) There is some K > 0, such that if(x, z)EI2 and x > K, then z < x. 

Furthermore, under the assumptions (W. 1)-(W.3) on the welfare function w, the 
(reduced form) utility function u satisfies the following properties 

(U.1) u(x, z) is continuous on 12. 
(U.2) If (x, z)~I2 and x' >_ x and 0 < z' < z, then u(x', z') > u(x, z). 
(U.3) u(x, z) is concave on f2; and, given x > 0, u(x, z) is strictly concave in z on I2. 

The concepts of a program and that of an optimal program (introduced in 
Section 3a) can then be viewed equivalently as follows. A program {x~}~ from x > 0 
is seen to be defined by 

Xo=X,(Xt, Xt+l)~s for t > 0  

And an optimal program {2t}~ from x > 0 is seen to be a program satisfying 
oo oo 

t = 0  t = 0  

for every program {x,}~ from x. 
This conversion of our framework in primitive form to the reduced form is 

particularly helpful because it allows a direct application of the many results 
developed for the reduced form model [see McKenzie (1986) for a comprehensive 
survey of the more important results]. We would like to emphasize, however, that 
our assumptions are exclusively on the primitive form, and these imply that certain 
properties are satisfied by the corresponding reduced form. If some property is 
assumed about (O, u, 6), this needs to be justified by appropriate assumptions on 
the primitives (f, w, 6) of the model. We will discuss this point in more detail in 
Section 4. 
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3c. Value and policy functions 

Given a reduced form model (~, u, 6), satisfying (fl. 1)-(~.4), (U. I)-(U.3), standard 
arguments ensure that there is an optimal program from every x > 0. Conditions 
([~.2) and (U.3) ensure that an optimal program is unique. 

We define a value function V:~+ ~ ~ by 

V(x)= ~ 6'u(Yc,,Yfi+l) (3.1) 
t = 0  

and the optimal policy function h:~+ --. N+ by 

h(x) = s (3.2) 

where {s is the optimal program from x > 0. 
It is easy to check that V is a concave function on ~ + .  Furthermore, an 

application of an appropriate version of the maximum theorem yields the continuity 
of V and h on o~+ [see, for example, Dutta-Mitra (1986)]. 

Given any xe.~+,  the constrained maximization problem 

Max [u(x,z) + 6V(z)] 
Subjectto (x,z)~Q 

has a unique solution, H(x). It follows from the definitions of V and h that 
H(x) = h(x) for all x e ~ +  and further V(x)= u(x, h(x))+ ~V(h(x)). This yields the 
"optimality equation" for each x e ~ + :  

V(x) = Max [u(x, z) + 6V(z)] 
(x, z~e t2 

It is not difficult to verify that if ~b is any continuous real valued function on [0, K] 
satisfying the "functional equation of dynamic programming": 

~b(x) = Max [u(x, z) + 6~(z)] for x >_ 0 
(x ,z)~ t2 

then ~(x)= V(x) for all xe[0, K]. That is, V is the unique solution (in the class 
C[0, K]) of the functional equation of dynamic programming. 

We summarize the above facts in the following theorem, for ready reference. 

Theorem 3.1: 
(i) The value function, V, defined in (3.1) is the unique continuous real valued 

function on [0, K], satisfying the functional equation of dynamic programming: 

V(x) = Max [u(x, z) + 6V(z)] (3.3) 
(x , z )e  ~ 

Further, V is concave and non-decreasing on ~ + . 
( ii ) The policy function h, defined in (3.2) satisfies the following property:for each 

x ~ + ,  h(x) solves uniquely the constrained maximization problem 

Max [u(x,z)+6V(z)] 
Subject to (x, z)~12 

Further, h is continuous on ~ +. 
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3d. Dual variables associated with optimal programs 

In the course of this paper, we will have to show at various points that certain 
specified programs are optimal. One way of doing this is by finding a value function 
satisfying the functional equation of dynamic programming. (We use this method 
to verify a result of Section 6). Another way is by specifying a sequence of dual 
variables (or "shadow prices") associated with the program, such that the program 
is "competitive" and satisfies the "transversality condition". (We use this method to 
verify the result of Section 5). We state this well-known result for ready reference. 

Theorem 3.2: 
Suppose {2t}~ ~ is a program from x, and {/~r}~ is a sequence of non-negative numbers 
such that 

(i) ~!u(:~t, xt+ 1) +/~t+ 1~,+ 1 - i0,~ > 6'u(x, z) + p,+ lz - p,x 
for all (x, z )eO and all t > 0 

a(d 
(ii) lim Pt2t = O. 

Then {2t}~ ~ is an optimal program from x. 

4. Observations on the primitive and reduced forms 

A considerable part of the literature on optimal intertemporal allocation has been 
developed for the reduced-form model. In this section, we emphasize the need to 
look at the primitive model, which gives rise to the reduced form, in order to assess 
the importance and compatability of some assumptions which are typically made 
directly On the reduced form. 

For this purpose, we consider a reduced form model (12, u, ~) as described in 
Section 3b, with 12 satisfying (f2.1)-(f~.4), u satisfying (U.1)-(U.3), and 0 < 6 < 1 and 
proceed to examine situations for which the optimal policy function will be 
monotone. 

4a. Monotone increasing policy functions 

We first examine the sufficient conditions which ensure that the optimal policy 
function is monotone non-decreasing. This case has traditionally been of importance 
because it leads to monotone behavior of optimal input stocks, converging to some 
stationary optimal input stock. 

Denote the interior of 12 by O o. We say that u is supermodular on 12 o if whenever 
(x', z'), (x", z"), (x', z") and (x", z') belong to O o and (x", z") >> (x', z'), we have 

u(x", z") + u(x', z') _> u(x", z') + u(x', z") (g) 

Following Ross (1983) and Benhabib-Nishimura (1985), it can be shown that if u is 
supermodular on..O o, then h is non-decreasing on N +. It is worthwhile to state this 
result formally. 
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Proposition 4.1 
Suppose (s u, ~) satisfies (f~.l)-(fl.4), (U.1)-(U.3) and 0 < 6 < 1. I f  u is supermodular 
on s then the optimal policy function, h, is non-decreasing on ~t +. 

There is a convenient way to check the supermodularity of u on s o. If u is C 2 
on s and D12u(x , z ) ~  0 for all (x, z)~s ~ then [following Ross (1983)] u can be 
shown to be supermodular on s o. 

If we turn now to our primitive model, we can try to find conditions on (f, w, 6), 
which will ensure that u is C 2 on s with D12u(x, z) > 0 for all (x, z)~s ~ I f f  is C 1 
on ~ ++ ,  and w(x, c) is C 2 on O ~ one can verify that for any (x, z)Eg2 ~ 

D12u(x, z) = [--  D 22 w(x, f ( x) - z) ] f ' (x )  - O l z w(X, f (x) - z) 

Thus, if we assume that 

- Dz2w(x, c)f ' (x)  > DlzW(X, c) for all (x, c)es ~ (4.1) 

we can e n s u r e  D12u(x , z) >_ 0 for all (x, z)es ~ This leads to the following result. 

Proposition 4.2 
Suppose (f ,  w, 6) satisfy (F.1)-(F.3), (W.1)-(W.3), and 0 < 6 < 1. Assume,further, that 
f is C 1 on ~++,  w is C z on s and (4.1)  is satisfied. Then the optimalpolicyfunction, 
h, is non-decreasing on ~ +. 

That all the assumptions of Proposition 4.2 are compatible can be seen by con- 
sidering the example where f ( x )  = 2x 1/2 for x ~ + ,  w(x, c) = x 1/2 + C 112 for (x, c)e~2+ 
a n d 0 < 6 <  1. 

Under the assumptions of Proposition 4.2, if {s is an optimal program from 
x > 0, it is clearly a monotone (non-increasing or non-decreasing) sequence. Thus, 
the assumptions imply that optimal behavior leads to what can be called "simple 
dynamics". 

4b. Monotone decreasing policy functions 

It might appear that, symmetric to our analysis in Section 4a, we should be able to 
get sufficient condit ions under which the optimal policy function is monotone 
non-increasing. However, this turns out to be incorrect except in the extreme case 
where h is an "extinction" policy (that is, h(x) = 0 for all x > 0). [A strong sufficient 
condition which ensures that h is not an extinction policy is the existence of a 
non-trivial stationary optimal stock.] 

Start, again, with the reduced form model (12, u, 6) where O satisfies (f~.l)-(f~:4), 
u satisfies (U.1)-(U.3), and 0 < 6 < 1. 

Now, suppose h were monotone non-increasing for all x > 0 and there was some 
> 0 for which h(~) > 0. Then, for all 0 < x < ~, h(x) > h(~) since h is monotone 

non-increasing. By continuity of h on ~ +, h(0) _> h(~) > 0. But clearly this contradicts 
the impossibility of free production (fl.1). It is worthwhile to state this formally. 

Proposition 4.3 
Suppose (s u, 6) satisfies (~.1)-(f~.4), (U.1)-(U.3), and 0 < ~ < 1. I f  h is the optimal 
policy function, and h( Y~ ) > O for some ~ > O, h cannot be non-increasing for all x ~(0, ,2]. 



660 M. Majumdar and T. Mitra 

To relate this result to the sufficient conditions provided in the literature to 
ensure (locally) non-increasing policy functions, we can proceed as follows. Define 
u to be submodular on [2 o if whenever (x', z'), (x", z"), (x', z") and (x", z') belong to /2  o 
and (x", z") >> (x', z'), we have 

u(x", z") + u(x', z') <_ u(x", z') + u(x', z") (S) 

Following Benhabib-Nishimura (1985), it can be shown that if u is submodular on 
/2 ~ and (x ~ h(x~ ~ then h is locally non-increasing at x ~ 

Proposition 4.4 
Suppose ([2, u, 6) satisfies (~.l)-(D.4), (U.1)-(U.3), 0 < 6 < 1 and u is submodular on 
[2 ~ l f for some 2, we have ( Yc, h ( 2 ) ) ~  ~ then there is a neighborhood N(s of Yc, such 
that the optimal policy function, h, is non-increasing on N(2). 

The submodularity of u o n / 2  o can be checked as follows. If u is C 2 o n / 2  o and 
Dx2u(x, z) < 0 for all (x, z)r ~ then u can be shown to be submodular on/2o.  

Turning to our primitive model, we can try to find conditions on (f, w, 6) which 
will ensure that u is C 2 o n / 2 o  with D12u(x,z)<O for all (x,z)~X9 ~ I f f  is C 1 on 
~++ ,  and w(x,c) is C 2 on X2 ~ and for all (x ,c)~2 ~ 

- -  D22W(X , c)f'(x) < Dlzw(x, c) (4.2) 

we can e n s u r e  D12u(x , z) <_ 0 for all (x, z)~12 ~ 
Now, we can make the following important observation. Condition (4.2) is 

inconsistent with the following condition: 

There is some ~ > 0 such that (x, h(x) )~O~ for x~(0, ~] (4.3) 

For  if (4.3) is satisfied, then by Proposition 4.4, we would have a non-increasing 
optimal policy function for all xe(0, ~]. And that is impossible by Proposition 4.3. 
Thus, any condition which ensures that (4.3) holds must contradict (4.2). 

A further implication of the fact that we have just noted may be obtained as 
follows. Suppose we assume condition (4.2), and there is some ~ > 0 such that 
h(~) > 0 [so that the optimal policy is not the "extinction" policy]. Then for some 
0 < x _< ~, we must have h(x) = f(x); that is for some positive input level, the optimal 
consumption level must be zero. We note this formally in the next result. 

Proposition 4.5 
Suppose ( f , w, 6 ) satisfy (F.1)-(F.3), (W.1)-(W.3), and 0 < 6 < 1. Assume, further 
that f is C x on ~ + + , w is C: on [2 ~ and (4.2) is satisfied. I f  h(2) > O for some Yc > O, 
then there is some input level x' > O, for which h(x') =f(x ' ) .  

If we assume the following Inada-type condition: 

O2w(x,,~c)~ oo as 2--+0 for all (x, c)~s ~ (4.4) 

then we can ensure that h(x) < f (x)  for all x > 0. Thus, by Proposition 4.5, Condition 
(4.2) is inconsistent with Condition (4.4), whenever h is not the extinction policy. 

Corollary 4.1 
Under the assumptions of Proposition 4.5, if h(~) > O for some ~2 > O, Condition (4.4) 
must be violated. 
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It is worth emphasizing that the relationships between Conditions (4.2) and (4.3) 
and between Conditions (4.2) and (4.4), might not be readily transparent; they only 
become so after looking at the implications of these conditions for the nature of the 
optimal policy function. 

We make a final remark before concluding this section. In the context of our 
model, the important contribution of Nishimura and Yano (1994) can be related 
to the preceding discussion as follows. If we suppose (in addition to the standard 
assumptions) that f is C a on ~++,  w is C 2 o n  ~o, (4.2) is satisfied, and there is a 
non-trivial stationary optimal stock, then something considerably stronger can be 
shown than is indicated in Proposition 4.5; viz., there is some input level x' > 0 such 
that h(x)=f(x) for all O<x<x' ,  and h(x)<f(x) for all x>x '  [and, so, h is 
non-increasing for x > x' by Proposition 4.4]. This means that the graph of h 
resembles a "tent-map", and so an interesting route to obtaining cyclical and chaotic 
optimal programs in this model is indicated, which is quite distinct from the 
technique pursued by Boldrin and Montruchhio (1986b). 

5. Periodic optimal programs: an example 

Beyond the "simple dynamics" discussed in Section 4a, what kinds of optimal 
dynamic behavior can our model exhibit? In this section, we show by constructing 
a suitable example, that our model can generate optimal cyclic behavior for all 
discount factors close to one. Examples with a similar flavor have been presented in 
multi-commodity models by Weitzman [reported in Samuelson (1973) and discussed 
by McKenzie (1983), Benhabib-Nishimura (1985) and others], and Wan (1988). 
These models can, in fact, be reduced to the form we have discussed in Section 3b. 
Indeed, the strategy used in obtaining our example is to start with the reduced-form 
version of Weitzman's example, and place assumptions on the primitives of our 
aogreoative model which will yield that reduced form. 

We proceed now to describe the example more precisely. Our purpose is to show 
that there is a specification of (f, w, 3) where 

(i) f : ~ +  ~ +  satisfies (F.1)-(F.3); 
(ii) w:~Z+ ~ ~+ satisfies (W.1)-(W.3); 

(iii) 0 < $ < 1 

such that for every 6 satisfying 6 < 6 < 1, 

(a) there is a unique non-trivial stationary optimal stock x(6) 
(b) there is an open interval, A(6), containing x(6), such that if {xt}~ is the 

optimal program from x~A(6), with x # x(6), then {xt}~ is periodic with 
period 2. 

Thus, optimal programs continue to be periodic even for discount factors, 6, 
arbitrarily close to 1, and also for initial input stocks, x, arbitrarily close to the 
stationary optimal stock, x(6). 

It is worth mentioning that this example might appear to contradict what is 
usually called a "turnpike theorem" for discount factors close to one. Actually, it 
does not, since a correct statement of such a turnpike theorem always includes an 
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assumption of strict concavity of the reduced utility function on the transition 
possibility set. Our example (and Weitzman's) does not have a strictly concave 
reduced utility function. It should also be observed that the more general theorem 
of the subject, namely the "neighborhood turnpike theorem" [emphasized notably 
by McKenzie (1982, 1986)] is completely consistent with our example, since as the 
discount factor approaches one, optimal programs (even though they exhibit cyclic 
behavior) are confined in smaller and smaller neighborhoods of the corresponding 
stationary optimal stock. 

Example 5.1: 
Define f : ~ +  ~ +  by 

f ( x ) = S ( 3 2 / 3 ) x -  32x 2 +(256/3)x 4 f o r 0 < x  <0.25 

for x > 0.25 

Define w:~2+ ~ N +  by 

w(x, c) = 2xl/2c 1/2 for all (x, c)eN 2 

Finally, define $ = (1/3). 
It can be checked that f satisfies (F.1)-(F,3) with K = 1, and w satisfies 

(W.1)-(W.3). 
Now, let 6 be any discount factor satisfying 8 < 6 < 1. We fix this 6 in what 

follows. Define an open interval 

A(6) = {x:0.25 < x < 3~52/(1 + 362)} 

and also a point 

x(a) = 6/(1 + 6) 

It can be shown then that 

(a) x(a) is the unique non-trivial stationary optimal stock [note that 
(b) for every xeA(a), with x r x(6), the optimal program {~,}~ from x is periodic 

with period 2. 

6. Chaotic optimal programs 

6a. An example of an economy exhibiting topological and ergodic chaos 

Optimal cyclic behavior, though "less simple" than monotone behavior, has consider- 
able regularity to it to be viewed as "predictable". In this section, we show by 
constructing a suitable example that our model can exhibit optimal behavior which 
is chaotic (in both the "topological" and "ergodic" senses). 

Examples similar to ours have been constructed, among others, by Deneckere 
and Pelikan (1986) and Boldrin and Montruchhio (1986b) in the context of the 
reduced-form model discussed in Section 3b. These models in turn have been shown 
to be reduced-form versions of two-sector models. In our example, an aogregative 
model is seen to yield the reduced-form for which the optimal policy function is the 
logistic function (for an appropriate domain of inputs). 
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It is, perhaps, worth mentioning that an example of chaotic optimal behavior is 
obtained in an aggregative model (with wealth effect) by Boldrin and Montrucchio 
(1986a). While the framework is superficially similar to ours, the production 
function in their example, is, in fact, "bell-shaped" (initially strictly increasing and 
thereafter strictly decreasing) and this feature appears to be unattractive in terms 
of economic modeling, as well as crucial to their construction. 

We now describe the nature of our example more formally. Our purpose is to 
show that there is a specification of (f, w, ~) where 

(i) f : ~ +  ~ +  satisfies (F.1)-(F.3); 
(ii) w:~2+ ~ +  satisfies (W.1)-(W.3); 

(iii) 0 < 6 <  1 

such that the optimal policy function, h : ~  + -o ~ + satisfies the logistic equation 

h ( x ) = 4 x ( 1 - x )  f o r 0 < x < l  

Example 6.1: 
D e f i n e f : ~ +  ~ +  by: 

J '(16/3)x- 8x 2 + (16/3)x 4 forx~[0,0.5) 
f (x) - -  

for x > 0.5 

= 0.0025 

The function w:~2+-o~+ is defined in a more involved fashion. Define the 
parameters L = 98, a = 425. Denote by I the closed interval [0, 1], and define the 
function 0 : I - o i  by 

O(x) = 4x(1 - x) for x ~ I  

Now, define u : 1 2 ~  ~1 by 

u(x, z) = a x  - 0 . 5 L x  2 + zO(x)  - -  0 .5z  2 - -  6 [ a z  - 0 . 5 L z  2 + 0.50(z) z] 

Define the set D c I z by 

D = {(x,c)~I x ~ + : c  < f (x )}  

and a function w : D - o ~  by 

w(x, c) = u(x, f ( x )  - c) for (x, c)sD 

We extend the definition of w to the domain ~. For (x, c)~O with x > 1 (so that 
f ( x )  = 1, and c < 1), define 

w(x, c) - w(1, c) 

Finally, we extend the definition of w to the domain ~ 2 .  For (x, e) in ~ 2  with 
c >f(x) ,  define 

w(x, c) = w(x, f ( x ) )  

It can be checked for this example that f satisfies (F. 1)-(F.3), w satisfies (W. 1)-(W.3). 
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Furthermore, it can be shown that the optimal policy function h :~+  --. ~ + satisfies 

h(x) = 4x(1 - x) for x ~ l  

Referring now to Section 2, we have an example of(f ,  w, S) for which the dynamical 
system (I,h) exhibits topological and ergodic chaos (and also has a positive 
Lyapunov exponent). 

6b. Robustness of topological chaos 

In Section 6a, we provided a specification of (f, w, 8) for which topological chaos 
is seen to occur. A natural question to ask is whether this is fortuitous (so that if 
the parameters f ,  w or 6 were perturbed ever so little, the property of topological 
chaos would disappear) or whether this is a "robust" phenomenon (so that small 
perturbations of f ,  w or 3 would preserve the property of topological chaos). 

We proceed now to formalize the above question as follows. Define ~ = 
{ f : ~ +  ~ +  satisfying (F.1)-(F.3)}; "/U = {w:~a+ ~ +  satisfying (W.1)-(W.3)); 
A = {6:0 < 6 < 1}. An economy, e, is defined by a triple ( f ,  w, 3)E~,~ x zu / x  A. The 
set of economies, ~ x ~ x A is defined by E. 

Consider the economy e = (f,  w, ~-) defined in Section 6a. We would like to 
demonstrate that all economies e e E  "near" the economy e will exhibit topological 
chaos. Thus, the property of topological chaos will be seen to persist for small 
perturbations of the original economy. 

A convenient way to make the above idea precise is to define for e~E, the 
"distance" between economies e and e by 

d(e,e) = sup If(x) - f ( x ) [  + sup Iw(x,c) - w(x,c)[ + 16 - 31 
x >_ 0 (x , c )  > 0 

Note that d(e, e) may be infinite. 
Before we proceed further, we have to clarify two preliminary points. First, if we 

perturb the original economy e (that is, choose another economy e ~ e), we will, in 
general, change the set of programs from any given initial stock, as also the optimal 
program from any given initial stock. That is, programs and optimal programs [and 
hence optimal policy functions] are economy specific. Thus, given an economy e, 
we use expressions like "e-program", "e-optimal program", "e-optimal policy 
function" with the obvious meanings. 

Second, recall that for the original economy e, K -- 1, and so if the initial stock 
was in I, then for any program from the initial stock, the input stock in every period 
is confined to I. Furthermore, for any initial stock not in I, the input stock on any 
program belongs to I from the very next period. In this sense, (1, h) is the "natural" 
dynamical system for the economy e. When we perturb the economy, we do not 
wish to restrict the kind of perturbation in any way, and so we would have to allow 
the new economy's production function to satisfy (F.3) with a K > 1. This changes 
the "natural" state space of the dynamical system for the new economy. However, 
recalling that we are only interested in "small" perturbations, it is surely possible 
to ensue that d(e, e) _< t, so that we can legitimately take the "natural" state space 
choice to be J = [0, 2]. 

We can now describe our result formally as follows. 
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Theorem 6.1: 
Let e = (f ,  w, 6) be the economy described in Example 6.1. There exists some e > 0 
such that for every economy eeE with d(e, e) < e, the dynamical system (J, h) exhibits 
topological chaos, where h is the e-optimal policy function and J = [0, 2]. 

7. Appendix 

7.1. Verification of the results of section 4 

(a) Verification of Proposition 4.5 

Suppose,  con t ra ry  to the claim, we have h(x) < f ( x )  for all 0 < x _< 2. Then  we have 
two cases to consider. Either (i) h(x) > 0 for all xe(O, ~],  or (ii) h(x) = 0 for some 
xe(0,  ~]. In case (i), (x, h(x))eg2 ~ for xe(0,  2]; that  is Condi t ion  (4.3) is satisfied. But 
this is inconsistent with (4.2), so case (i) could not  arise. In case (ii), not ing that  
h(2) > 0, we actually have h(x) = 0 for some xe(0,  if). Let x" = sup {xe(0, ~):h(x) = 0}. 
Then  h(x")= 0, and 0 < x " <  5c by continuity of  h. Also, f ( x ) >  h(x)> 0 for all 
x"<x<Yc ,  so tha t  (x ,h(x) )sO ~ for x " < x < ~ .  By Propos i t ion  4.4, h is non-  
increasing in (x", 2), and the cont inui ty o fh  leads to h(x") > h(2) > 0, a contradict ion.  
Thus  case (ii) could not  arise. Since these are the only two cases possible, the claim 
is established. 

(b) Verification of Corollary 4.1 

We claim that  Condi t ion  (4.4) implies h(x) < f (x )  for all x > 0. Fo r  if the claim 
is false, there is some x > 0 for which h(x) = f ( x ) .  This means  that  if {xt}~ is the 
opt imal  p r o g r a m  from x, then xl  = f ( x ) .  Consider  the sequence {x'~}~ defined by 
x o = x, and x', = (1 - 2)x, for t > 0, where 0 < 2 < 0.5. Clearly {x't} ~ is a p rogram.  
Now,  we have 

oo 

E t ! ! 6 w(x,, ct+ 1) > w(.~, 2f (x) )  + (1 - 2)6 V(f(x))  
0 

= [w(x, 2f (x) )  - w(x, 0)] + [w(x, O) + 6V(f(x))]  + [(1 - 2)6V(f(x))  - 6V(f(x))]  

> D2w(x, 2 f ( x ) )2 f (x )  + V(x) - 26 V(f(x))  

ct] 

Thus ~ 6tw(x'~, c't+ 1) - V(x) > 2[DEW(X, 2f (x) )  - 6 V(f(x))].  N o w  (x, f ( x ) /Z )e~  ~ 
0 

and so by Condi t ion (4.4), O2w(x, 22(f(x)/2)) ~ oo as 22 ~ 0. Thus for 2 small enough 
and positive, we can ensure ).[Dzw(X, 2f (x) )  - 6 V(f(x))]  > 0. This implies that  

oo 

t t t ~6 w(x,,c,+j> V(x) 
0 

which is a contradic t ion to the definition of V. This establishes o u r  claim. 
Corol la ry  4.1 now follows directly f rom Propos i t ion  4.5. 
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7.2 Verification of Example 5.1 

(a) Verification of Assumptions (F.1)-(F.3),  (W.1)-(W.3)  

Note  that f(0) = 0 and f ( x )  -~ 1 as x -~ 0.25 from the left, so f is clearly cont inuous 
on ~ +  verifying (F.1). 

Next, observe that  for 0 _< x < 0.25, f is C 2 and 

f ' ( x )  = (32/3) - 64x + (1024/3)x 3 

f " ( x )  = - 64 + 1024x 2 

As x --, 0.25 from the left, f ' ( x )  ---, 0 and f " ( x )  ~ O, so f is in fact C 2 on ~ +. It is clear 
that  f " ( x )  < 0 for 0 _< x < 0.25 and so f ' ( x )  > 0 for 0 _< x < 0.25 [since f '(0.25) = 0]. 
Thus, f is non-decreasing and concave on ~ +  verifying (F.2). 

Note  that (F.3) is satisfied by choosing K = 1. For  if x > 1, then [ f ( x ) / x ]  = 
(l/x) < 1. If0.25 _< x < 1, [ f ( x ) / x ]  = (l/x) > 1. Also, since f(0)  = 0 and f is concave, 
[ f ( x ) / x ]  is non-increasing in x. Thus, for 0 < x < 0.25, [ f ( x ) / x ]  > [f(0.25)/0.25] = 
4 > 1 .  

The verification of assumptions (W. I)-(W.3) for the given welfare function is too  
obvious to be spelt out  in detail. 

(b) Verification of the unique non-trivial stationary optimal stock x(6) 

Since 0.25 < x (6 )  < 1, we have f ( x ( 6 ) )  = 1 > x(6) ,  and so c(6) = - f ( x ( 6 ) ) -  x (6 )  = 
[1/(1 + 6)] > 0. Define {ff,}~ by ~, = x(6) for t >  0. Then, {2,}g is a s tat ionary 
pro'gram from x(6), and ct+ 1 = f ( x t )  - xt+ 1 = c(6) > 0 for t _> 0. Next, define a 
sequence {p,}~ by p, = (6~/61/2) for t > 0. 

Recalling our  definition of ;2 and u (see Section 3b), we note that u is C 1 in the 
interior off2 (that is, s"2 ~ and cont inuous and concave on .(2. Thus, for any (x, z) E f2, 
and for any t > 0, 

U(X, Z) --  U(.~,, )~t + 1 ) ~ O lU()~t, x t  + 1 ) ( x  - -  x t )  "~ D 2u( '2t, x ,  +1 )(z  - :~ , + 1 ) 

Now, for any (x, z)sg2 ~ x > 0 and f ( x )  - z > 0. So 

0 2 u (x ,  z)  = - D2 w ( x ,  f ( x )  - z)  ~ (7.1) 

D l u ( x ,  z)  D a w ( x ,  f ( x )  - z)  + f ' ( x ) D 2 w ( x ,  f ( x )  - z) J 

Since 0.25 < x(6) < 1, f ' ( x ( 6 ) )  = 0, we have D 2 u ( x ( 6  ), x (6 ) )  = - D 2 w ( x ( 6 ) ,  c(6)); 
Dlu(x(6), x(6)) = Dlw(x(6), c(6)). So, 

L/(X, Z) --  U()Ct, )~t +1 ) = D1 w(x(6) ,  c ( ( ~ ) ) ( x  - -  x t )  - -  O2w(x(6) ,  c(6))(z - ~, + 1) 

= (1/~51/2)( x - -  s  - -  61/2( z --  2t+ 1) 

Thus, multiplying through by 6 ~, t ransposing terms, and substituting Pt = (6~/61/2), 

we get 

6tu(x ,  z)  + Pt+ lZ - p~x < 6~u(~,, x t+ 1) + Pt+ 12t+ 1 - PtXt 

Also, PzXt = Ptx(6)  ~ 0 as t --* oe. Thus, by Theorem 3.2, {xt}~ is an optimal p rogram 
from x(6), and x(6) is a non-trivial s tat ionary optimal stock. 
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T o  check tha t  x(6) is the on ly  non- t r iv ia l  s t a t i ona ry  op t ima l  stock,  we p roceed  
as follows. Suppose  2 is any  non- t r iv ia l  s t a t iona ry  op t ima l  stock. Then,  by  
s ta t ionar i ty ,  ff~[0,  1]. Since ff is non-tr ivia l ,  2~(0,  l ] .  By opt imal i ty ,  2~(0,  1). Since 
f ( x )  > x for  all x~(0,  1), (if, if) is in 12 ~ D e n o t e  f (~ )  - ~ by ~; then  ~ >  0. 

N o w ,  for  each t > 0, ~ mus t  solve the fo l lowing p r o b l e m  

M a x  u(~, x) + 6u(x, 2) 

Subject  to (if, x)~12 a n d  (x, X)~Y2 

Since (if, if) is in the in ter ior  of  12, we have  the f i rs t -order  cond i t ion  

D2u(2~, X) + 5591 u(X, 2) = 0 

Thus,  using (7.1), we get 

(y/e) 1/2 = a(X/e)l/z f ' (2)  + 6(e/~) 1/2 

Since f ' ( f f)  > 0, we then h a v e f f  > 6~ = 6 [ f ( 2 )  - ~].  This yields 

6 { [ f ( X ) / X ]  - 1} _< 1 

Since f is concave  and  f (0 )  = 0, [ f ( x ) / x ]  is non- inc reas ing  in x. Thus ,  for x _< 0.25, 
[ f (x ) /x l  >_ [f(0.25)/0.25] = 4, and  6[[ f ( x ) / x l  - 11 _> 35 > 1. Consequent ly ,  2 > 0.25. 

Since ~ > 0.25, we can  re tu rn  to the above  f i rs t -order  condi t ion ,  a n d  observe  
t h a t  f ' ( 2 )  = 0; so,  we o b t a i n  2 = 6 ( =  6 [ f ( 2 )  - 2 ]  = 6(1 - 2).  T h i s  m e a n s  

= [6/(1 + 6)1 = x(5). 

(c) Verification of the periodic optimal program 

Given  any  ~ A ( 6 ) ,  ~ :~ x(6), define 

y = 62(1 _ 2 ) / [ 6 2 ( 1  _ ~) + ~3 

Given  the defini t ion of  y, it is easy to check  tha t  37 # ~, and  

[62(1 - 37) + 37] [62(1 - ~) + Y] = 6 2 (7.2) 

a re la t ion  we will find useful in w h a t  follows. 
W e  no te  tha t  37 < 552(1 - Y)/[62(1 - 2) + 0.25] < 62(1 - 0.25)/[62(1 - 0.25) + 

0.25] = 362/[1 + 361]. Also, 62(1 - X)/2 = 6z[(1/X) - 1] > 62[{(1 + 362)/36 z} - 1] = 
(1/3). So, 37 = 552(1 - 2)/[62(1 - 2) + 21 = 1 - {2/[62(1 - 2) + X]} = 1 - (1/[{6z(1 - 
s + 11) > 1 - (1/[(1/3) + 1]) = 0.25. Thus ,  37~A(6). 

Define a sequence  {2,}~ as 2, = s for  t = 0, 2, 4 , . . .  ;2,  = 37 for t = 1, 3, 5 . . . . .  We  
can verify that  {2t}~ is a p rog ram from 2. T o  see this, note  that  for t = 0, 2, 4 . . . .  ,2~+ 1 = 
37 < 1, and  f (2 , )  = f ( 2 )  = 1, so tha t  for t = 0, 2, 4, 

at+l =-f(2t) - s = x / [62(  1 - 2) + 21 

Similarly, for t = 1, 3, 5 . . . . .  2,+ 1 = ff < 1, and  f (~,)  =f(37) = 1, so tha t  for t = 1, 3, 5 . . . .  

5 ,+,  = f ( 2 , )  - 2,+1 = (1 - 2) 

It remains  to verify tha t  {2,}~ is an  op t ima l  p r o g r a m  f rom 2. T o  this end, define 
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a sequence {/~,}~ as follows. Fo r  t = 0, 2, 4 . . . . .  

P,+  1 = 6 ' [ a 2 (  1 - 2 )  + ~] 1/2 

For  t =  1 ,3 ,5 , . . . ,  

Fur ther ,  define 

/~,+ 1 = a '+  ~ / [ a 2 ( 1  - :Z) + :~] 1/2 

M. Majumdar and T. Mitra 

(7.3) 

(7.4) 

Po = 1/[62( 1 - 2) + 2] 1/z (7.5) 

Since (2,, 2,+ 1)el2 ~ for t > 0, we obtain,  for any (x, z)el2, and t > 0, [using (7.1)] 

u(x,  z) - u ( 2 ,  ~, + 1) <- D l u(~,,  ~, + 1)(x - X,) + D2u(2, ,  2, + l ) (z  - ~, +1) 

= O l w ( 2  t, 6,+ , ) ( x  --  2t) -- O z w ( 2 ,  et+ 1)(z - Yq+ x) 

For  t = 0, 2, 4 . . . .  , we then have 

u(x, z) - u(&, 2,+ 1) -< { 1 / [ a 20  - 2) + x ]  } " ( x  - ~) - [62(1 - ~z) + x ] ' 2 ( z  - y). 

So, mult iplying through by 6 t, and using (7.3)-(7.5), 

6t[U(X,  Z) - -  U(Xt,  2 t+ 1 ) ]  ~ Pt( x - -  X) - -  Pt+ 1( Z - -  Y)" 

Transpos ing  terms, for any  (x, z)~12, and t = 0, 2, 4 . . . . .  

6 'u(2 , ,  X t + 1) + P, + 12t + 1 - ~t~,  > 6 'u(x ,  z) + Pt + t z - p , x  (7.6) 

Fo r  t = 1, 3, 5 , . . . ,  we have 

u(x, z) - -  U(.~t, Xt+ 1) ~--- { 1/[62( 1 - Y) + Y] } 1/2( x - Y) - [62( 1 - Y) + Y] 1/2( z - 2) 

= ( l / a ) [ a 2 ( 1  - ~ )  + JZ] l n ( x  - ~ )  - { a / [ a 2 ( 1  - ~ )  + ~z] } 1/2(z - 2 )  

using the relation (7.2). Thus,  mult iplying through by 6 t, we have 

a ' [ u ( x ,  z)  - u ( 2 , ,  2 , +  1 ) ]  -< ~ , ( x  - ~)  - p , +  l ( z  - ~) 

using (7.3) and (7.4). Transpos ing  terms, we obtain,  for any (x, z)e/2, and  t -- 1, 3, 5 . . . .  

6'u(o~t, ~, + 1) + P, + 1 x ,  + 1 - p ,2 ,  > 6 'u(x ,  z) + p, + 1 z - p , x  (7.7) 

Note  finally that/~, --+ 0 as t + oo and if, is either ~ or  ~ for each t > 0. Hence,  we 
have 

lim/~,2, = 0 (7.8) 
t--+ oo 

Using (7.6)-(7.8) and Theorem 3.2, {2,}~) ~ is an opt imal  p r o g r a m  f rom 0~. 

7.3 Verification of Example 6.1 

(a) Verification of Assumptions (F.I)-(F.3), (W.1)-(W.3) 

Note  that  f (0 )  = 0, and as x - ,  0.5 f rom the left, f ( x )  -+ 1. So f is dea f ly  cont inuous  
on ~ + ,  verifying (F.1). 
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Next,  note  tha t  for 0 < x < 0.5, f is C 2, and  

f ' ( x )  = (16/3) - 16x + (64/3)x z 

f " ( x )  = - t6  + 64x z 

As x ~ 0 . 5  f rom the left, f ' ( x ) ~ O  and  f " ( x ) ~ O ,  so f i s  in fact C 2 on ~ + .  It  is clear  
tha t  f " ( x )  < 0 for 0 < x < 0.5, and  so f ' ( x )  > 0 for 0 < x < 0.5 [s ince f ' (0 .5)  = 0]. 
Thus,  f is non-decreas ing  and  concave  on ~ + ,  verifying (F.2). 

Note  that  (F.3) is satisfied by choosing K = 1. F o r  i fx  > 1, then [ f (x) /x]  = (I/x) < 1. 
I f0.5 _< x < 1, [ f ( x ) / x ]  = ( l /x )  > 1. Also, since f (0 )  = 0, and  f is concave,  [ f ( x ) / x ]  
is non- increas ing  in x. Thus,  for 0 < x < 0.5, [ f ( x ) / x ]  > [f(0.5) /0.5]  = 2 > 1. 

Before p roceed ing  to  verify the a s sumpt ions  (W. 1)-(W.3), we note  an  i m p o r t a n t  
p rope r ty  o f f ,  namely  

f ( x )  > O(x) for x ~ l  

To see this, note  tha t  f ( x )  = 1 for 0.5 < x < 1, and  O(x)~I for all x e l  so f ( x )  > O(x) 
for 0.5 < x < 1. Also, f (0 )  = 0(0) = 0. F o r  0 < x < 0.5, we define//(x) - [ f ( x )  - O(x)]/x. 
Then fl(x) = (4/3) - 4x + (16/3)x 3, and  fl'(x) = - 4 + 16x 2. Thus  fl'(x) < 0 for 
0 < x < 0.5, and /~  is a decreas ing  function.  As x ~ 0 . 5  f rom the left 3 (x) -~0 .  Thus,  
3(x) > 0 for 0 < x < 0.5, and  so f ( x )  > O(x) for 0 < x < 0.5. 

W e  now verify (W. 1)-(W.3). Recal l ing the  defini t ion of  u: 12 ~ ~ ,  we can  compu te  
the fol lowing derivat ives:  

Olu(x , z )  = a - L x  + 4z(1 - 2x) 

Dzu(x , z  ) = 4x(1 - x) - z - Sa + SLz  - 166z + 48Jz 2 - 326z 3 

D1 lU(X, z ) = - -  L -  8z 

O l 2 u ( x  , z) --- 4(1 - 2x) = O 2 1 u ( x ,  2) 

D22u(x,z  ) = - 1 + S L - -  166-+ 966z --  966z 2 

We first check (W.1)-(W.3)  on the set D. Clear ly,  w is C 2 on  D, and  we can  c ompu te  
the first par t ia l s  of w as follows: 

D 2 w ( x  , c) = - Dzu(x,  f ( x )  -- c) 

D1 w(x, c) = D 1 u(x, f ( x ) -  c) + D2 u(x, f ( x ) -  c ) f ' ( x )  

NOW, 

D2u(x, f ( x )  - c) < 1 - Sa + 6 z ( L -  16) - z + 4 8 3 <  1 - 6a + 483- 

[ s ince  3 ( L -  16) < 1] 

< 1 - S(a - 48) 

< 0 [s ince J (a  - 48) > 1] 

Thus  D2w(x, c) > 0 for (x, c)ED. Also, Dlu(x ,  z) > a - L -  4 > 323, i f ( x )  < f '(O) = 
(16/3), and  

Dzu(x,  z) > - 6a - z + 6 z ( L -  16) + 16jz2(3 - 2z) > - Sa - z [s ince L >  16] 

> - 2.0625 
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T h u s ,  O2u(x  , z ) f ' ( x )  _> - 16, and Dxw(x, c) _> 323 - 16 > 0. Thus, w is strictly increas- 
ing in c (given x) and in x (given c) on D. 

The second partials of  w are: 

D 22 w(x,  c) = D 22u(x, f (x) - c) 

D21w(x, c) = - D2iu(x, f ( x )  -- c) -- D22u(x, f ( x )  -- c) f ' (x)  = D12w(x, c) 

O i l  w(x, c) = O x 1 u(x, f ( x )  -- c) + D I 2u(x, f ( x )  - c) f ' (x)  + [O21 u(x, f ( x )  -- c) 

+ O22u(x, f ( x )  -- c) f ' (x) '] f ' (x)  + D2u(x, f ( x )  - c) f"(x)  

Now, D22u(x, z) < - 1 + SL + 966z < - 1 + 6-(L + 96) < - 0.5 < 0; and D22u(x, z) >__ 
- 1 + 6 ( L -  16)> - 1. Also, D1 l u(x, z ) <  - L  < 0; and I D~2u(x, z ) [<  4. These esti- 
mates  imply that  

( D l l n ) ( D 2 2 u )  - (D12u) 2 > (L/2) - 16 = 33 > 0 

Also,  DEU(X,Z ) > - - 2 . 0 6 2 5  and DEEU(X,z ) > - - 1  as checked above; while f " ( x ) =  
- 16 + 64x 2 for 0 < x < 0.5, so 0 > f " ( x )  >_ - 16. Thus,  (D22u)(D2u)f"(x) > - 33. 

Now, (D 1 lwXO22 w) - (D12w) 2 = (D22uXD 1 lu) + 2(D 12uXO22u)f'(x) -I- (D22u)2f'(x) 2 + 
(D22u)(D2u)f"(x) -- (D12u) 2 -- (D22u)2 f ' (x)  2 - 2(Di2u)(D22u)f'(x ) = (D22u)(Dllu) - 
(DI2U) 2 + (D22u)(D2u)f"(x). Thus, using the above estimates, we have 

D1 iw(x, c)D22w(x, c) -- (D12w(x, c)) 2 > 33 - 33 = 0 

Also, D22w(x, c)= D22u(x, f ( x ) -  c ) <  0, so that  w(x, c) is strictly concave on the 
set D. 

Next,  we check that  w satisfies (W.1)-(W.3) on ~2. By definition of w on O, it 
satisfies (W.1) and (W.2). To  check (W.3), let (x, c) and (~,0) belong to O and let 
0 < 2 < 1 .  Then w ( 2 ( x , c ) + ( 1 - 2 ) ( ~ , O ) ) = w ( 2 x + ( 1 - 2 ) ~ , 2 c + ( 1 - 2 ) O ) .  N o w  
[2x + (1 - 2)~, 2c + (1 - 2)c-] is in D if [2x + (1 - 2)~] < 1. I f x  and :~ are bo th  < 1, 
then concavi ty  of  w follows f rom concavi ty  of w on D. So, consider wi thout  loss of  
generality that x > 1 while s < 1. Then w(2x + (1 - 2)~, 2c + (1 - 2)0) > w(2 + (1 - 2)~, 
2c + (1 - 2)0) [using (W.2)] > 2w(1, c) + (1 - 2)w(~, 0) [since (1, c) and (~, c-) belong 
to D]  = 2w(x, c) + (1 - 2)w(~, g). If  [2x + (1 - 2)~] > 1, then w(2x + (1 - 2)s 2c + 
( 1  - 2)0) = w(1, 2c + (1 - 2)0) > 2w(1, c) + (1 - 2)w(1, c-) [since (1, c) and (1, ~) belong 
to D] > 2w(x, c) + (1 - 2)w(~, 0). 

I f 0  < x < 1 is fixed, then w(x, c) is strictly concave in c [since D22w(x, c) < 0 on 
D];  If x > 1 is fixed, w ( x , c ) =  w(1,c) is strictly concave in c [since D22w(x,c ) < 0  
on D].  

Finally, we check that  w satisfies (W.1)-(W.3) on ~t2+. Again, w clearly satisfies 
(W.1) and (W.2). To  check (W.3), let (x, c) and (~, ~) belong to ~t2+ and let 0 < )~ < 1. 
D e n o t e  m i n [ c , f ( x ) ]  by G(x,c); m i n [ 0 ,  f ( ~ ) ]  by  G(~,0).  Then ,  we have  
w(2x + (1 - 2)s 2c + (1 - 2)0) > w(2x + (1 - 2))~, 2a(x,  c) + (1 - 2)G(2, 6)). Also, 
2G(x, c) + (1 - 2)G(s 6) _< 2 f (x )  + (1 - 2)f(~) <_f(2x + (1 - 2)i). Further,  G(x, c) <_ 
f ( x )  and G(:~, 6) <_ f (2) .  Thus,  (x, G(x, c)), (2, G(i ,  6)) and [2x + (1 - 2)~, 2G(x, c) + 
(1 - 2)G(s 0)] all belong to O. Thus, w(2x + (1 - 2)~, 2c + (1 - 2)~) > 2w(x, G(x, c)) + 
( 1  - 2)w(~, G(~, g)). I fmin  [c, f ( x ) ]  = c then w(x, G(x, c)) = w(x, c); i fmin [c, f ( x ) ]  r c, 
then c > f(x) ,  and w(x, G(x, c)) = w(x, f (x ) )  = w(x, c); thus, in either case, w(x, G(x, e)) = 
w(x, c). Similarly, w(~, G(g, ~)) = w(~, 0). Hence, 2w(x, G(x, c)) + (1 - 2)w(~, G(~, c-)) = 
2w(x, c) + (1 - 2)w(~, 0), complet ing our  demons t ra t ion  of the concavi ty  ofw on ~2+. 
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It is worth noting that by (W.1), w(x,c)> w(O,O)= u(O,f(O)-O)=O for all 
( x , c )e~!  2 .  Thus w maps ~ 2  to ~ + .  Also, for all ( x , c ) e~ l  2 ,  w ( x , c ) < w ( 1 , c ) <  
w(1, f(1)) = w(1, 1) = u(1, 0) = 376. 

(b) Verification of the optimal policy function 

This part of our verification relies heavily on the technique of Boldrin-Montruchhio 
(1986b). 

Define ~b:I2--*~ by 

~)(x, z) = ax  - 0 .5Lx  2 + zO(x) - 0.5z 2 

Clearly ~b is C 2 on I 2, and we can compute the following derivatives: 

D1 q~(x, z) = a - L x  + zO'(x) 

Dzq~(x, z) = O(x) - z 

D l l  (9(x, z) = - L + zO"(x) 

D12q~(x, z) = i f (x)  = Dz l  O(x, z) 

Oz2(a(x ,z  ) = - 1 

Now O'(x) = 4 - 8x and O"(x) = - 8. Thus [0'(x)[ _< 4 for x e I .  Also, looking at 
the Hessian matrix of ~b, we note that D l l O ( x , z ) < 0  sifice L >  0 and O"(x)<O. 
And (DI lq~)(Dz2~b) - (D12q~) 2 = L -  zO"(x) - [O'(x)] 2 > L -  16 > 0. Thus ~b is strictly 
c o n c a v e  Oil 12 . 

Clearly O(x)eI  for all x e I .  And, for any z e I ,  z r O(x), we have by the strict 
concavity of ~b, 

4)(x, z) - 4)(x, O(x) ) < o2q~(x, O(x) )(z - O(x) ) = 0 

Hence, for every x e I ,  O(x) uniquely solves the following constrained maximization 
problem: 

Max (b(x,z)~ 

Subjectto z e I  J (P) 

We define ~ :I --, I by 

O(x) = (a(x, O(x)) for x ~ l  

Then by definitions of ~b and 0, we have 

O(x) = ax  - 0 . 5 L x 2  -+- O ( x )  2 - 0 . 5 0 ( x )  2 = a x  - 0 . 5 L x  2 --1- 0 . 50 (x )  2 

Clearly 0 is a continuous function on I. 
Now, note that for (x, z ) d  2, the definitions of q~, ~ and u yields the equation 

u(x, z)  : 4)(x, z)  - ~ r  

Thus for every x ~ l ,  O(x) uniquely solves the problem: 

Max u ( x , z ) + 6 ~ , ( z ) }  (Q) 

Subject to z e I  



672 M. M a j u m d a r  a n d  T. M i t r a  

But  since O(x) < f ( x )  for x ~ I ,  we can  clearly also conc lude  tha t  O(x) unique ly  solves 
the p r o b l e m  

M a x  u(x, z) + 3~b(z) 

Subject  to (x, z)~12 ) (Q')  

This means  tha t  for all x e l ,  

M a x  [o(x, z) + $~b(z)l = u(x, O(x) ) + 6qJ( O(x) ) = 4~(x, O(x) ) = ~,(x) 
(x,z)~gt 

Apply ing  T h e o r e m  3.1 (i), we can  conc lude  tha t  ~b(x) = V(x) for all x ~ l .  T h u s  O(x) 
unique ly  solves the p rob lem:  

M a x  u(x, z) + ~V(z ) t  

Subject  to (x, z ) e O  , (Q") 

App ly ing  T h e o r e m  3.1 (ii), O(x) = h(x) for all x~ I .  

7.4 Verification of Theorem 6.1 

We descr ibe our  s t ra tegy of  p r o o f  briefly before p rov id ing  the formal  details. First ,  
we cons ider  an e -op t imal  p r o g r a m  f rom a specific initial inpu t  Ewe actual ly  choose  
x o = (1/8)] for which  

h3(xo) < Xo < h(xo) < h2(xo) 

This  enables us to find a n u m b e r  r / >  0 [we actual ly  have  r / =  (1/32)] such that  if 
{x;}~ ~ is any  sequence with x~ = x a n d  Ix' t - xtl <- '1 for t = 1, 2, 3, then 

x'a + q < x'o < x'l - tl < x'2 - 2tl 

Thus,  it is e n o u g h  to show tha t  for an  econo~ny e near  e, the e -op t imal  p r o g r a m  
f rom x stays within  t 1 of  the e -op t imal  p r o g r a m  f rom x in the f i r s t  three periods to  
invoke  the L i -Yorke  t h e o r e m  ( T h e o r e m  2.1) and  conc lude  robus tness  of  topo log ica l  
chaos .  This  appears  to  be intui t ively plausible,  b u t  it does  involve check ing  the 
details tha t  we p rov ide  below. 

W e  p roceed  formal ly  as follows. Let  {xt}~ ~ be the e -op t imal  p r o g r a m  f rom 
x = (1/8). Then  Xo = (1/8), x l  = h(xo) = (7/16), x 2 = h 2 ( x o )  = (63/64) and  x3 = ha(xo) = 
(63/1024). Clearly,  we have  

X 3 < X 0 < X 1 < X 2 

We n o w  break  up our  p r o o f  into several  steps 

Step 1: Let  {x;}~ ~ be any  sequence with x o = x = (1/8). I f  max  Ix', - x,I < (1/32), then 
t =  1,2,3 

t t x 3 + (1/32) < x o < x I - (1/32) < x 2 - (1/16) 

T o  see Step 1, no te  first tha t  x '  1 - x o = x'  1 - x = (x' 1 - x l )  + (xl - x) >_ (xt - x) - 
(1/32) = (5/16) - (1/32) = (9/32) > (1/32). Second,  x~ - x '  1 = (x~ - x2) + (xz - x~) + 
(xz - x'l) > (xz - x l )  - (1/32) - (1/32) = (35/64) - (4/64) = (31/64) > (1/32). Final ly ,  
X ;  - -  X ;  = X - -  X ;  = (X - -  X3)  + (X 3 - -  X ; )  ~ (X - -  X3)  - -  (1/32) > ( 1 / 8 ) -  (1/I 6)--  (i/32) = (1/32). 
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Define a set of  p rograms ,  Y as follows: 

Y = { {x,}~:{x,}~ is an e -p rog ram from x = (1/8), such that  max  
t =  1 . 2 . 3  

Ix, - x,I > (1/32)} 

Step 2: There is fl > 0 such t h a t / f  {x't} ~ is any e-program belonging to Y, then 
go 

8rw(x't, c't+ 1) < V(x) -- fl (7.9) 
0 

To verify this claim, suppose  on the con t ra ry  for each integer n > 1, there is an 
e -p rogram {x~'}~ ~ in Y satisfying 

go 

Y~ ~'w(xT, c~+ ~) _> V ( x )  - (1/n) 
0 

We can then pick a subsequence (retain notat ion)  such that  for each t >_ 1 

n - 
X t ~ X t a s  n ~ 0(3 

Clearly {.~,}~ is an e -p rog ram which belongs to Y. And, since {x,}~ is the unique 
e-opt imal  p r o g r a m  f rom x, there is ~ > 0 such that  

co 

Y', ~'wG, e,+l) _ V(x)- 
0 

Given ~, we can pick a positive integer T large enough so that  g r M  1 (1 - $) < (a/4), 
where M I  -= w(1, 1) > 0. Then we can pick N large enough so that  n >_ N implies 
that  for all t e l0 ,  1 , . . . ,  T] ,  

[w(x~', c~'+ 1) - w(x,,c,+ 1)1 < [e(1 - 6)/4] 

Then, for n > N, 
go T 

~wG, ~+ 1) ~ ~ 8~w(~, ~,+ 1) 
0 0 

T 

_> ~ ~tw(x~, c~+ 1) - (a/4) 
0 

oo 

_> ~ 6~w(x~', c~'+ 1) - (~/2) 
0 

> V(x) - (l/n) - (a/Z) (7.10) 

Combin ing  (7.9) and (7.10), 

V(x) - ct _> V(x) - (~/2) - (l/n) 

Thus  (l/n) > (0~/2) for all n > N, a contradic t ion  which establishes the claim. 
We now introduce some nota t ion  for the next (and crucial) step in the proof.  

Define a = f i x )  - x. Clearly d > 0. No te  that  2 6 <  1, and define M2 = [1/(1 - 2S)]. 
N o w  choose 0 < 2 < 1 with 2 sufficiently close to 1 so that  

2(1 - ) O M I M  2 <_ ( f l / 4 )  ( 7 . 1 1 )  
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where fl is given in Step 2. Next,  define M 3 = )-](t + 1)(2~)'. Note  that  w is C 1 on D, 
0 

and define M4 = max D2w(x, c). Finally define 
(x,c)eO 

= rain [(1 - 2)8, 0.00125, M1, {f l /4[2M1M3 + 2M2 + M2M4]  } ] (7.12) 

Step 3: Consider any e e E  with d(e, e) < ~, where ~ is defined by (7.12). Let  {x't} ~ be the 
e-optimal program from x = (1/8). Consider the sequence {x','}~ defined by x'; = 2x' t + 
(1 - 2)x for t > O, where 0 < 2 < 1 satisfies (7.11). Then {x~'}~ is an e-program from 
x which does not belong to Y. 

Note  that  for e e E  with d ( e , e )<c ,  f ( x ) < f ( x ) + c  for all x > 0 ,  so that  
f ( x )  < 1 + ~ for x > 0. This means that  K < (1 + ~) < 2. Thus,  defining J = [0, 2] we 
certainly have x, e J  for all t > 0, for every e-program {xt}~ from every initial stock 
in J. 

Using the definition of {xt'}~ it is rout ine to check that  {x't'}~ is an e-program 
as well as an e-program from x. 

Define another  sequence {~t}~ by ~t = 2xt + ( 1 -  2)x for t >_ 0. Then  again it 
is s traightforward to check that  {~t}~ ~ is an e-program as well as an e-program 
from x. 

We have to show that  {x't'}~ ~ does not  belong to Y. Suppose it did. Then  by 
Step 2 we would have 

oD 

~tw(x;', f(x't' ) -- x~'+ 1) < V(x) - fl (7.13) 
0 

Now using d(e,e) < ~, and the fact that  {~,}~ is close to {x,}~ ~ one can obtain the 
following estimate 

or~ 

~'w(xt, f (x , )  -- xt+ 1) > V(x) -- ~.M1M 3 - ~M z - (1 - ~.)M1M 2 (7.14) 
0 

s! oo Compar ing  {x, }o as an e-program and as an e-program, and using d(e,e) < ~, we 
can also obtain the estimate 

oo 

t . . . .  1) + e.[M1Ma + M2 + M2M4]  ~ 6 w ( x , , f ( x , ) - x "  ~ r, . . . .  ,+1, < y a w ( x , , f ( x , ) - x "  - -  t +  

0 0 

(7.15) 

Combining (7.13)-(7.15), 
oo oo 

t t t 6'w(~,, f (2 , )  - ~,+ 1) > ~ 6 w(x,, f (x , )  - x,+ a) + (fl/4) 
0 0 

which contradicts the fact that  {x',}~ ~ is e-optimal from x. 

Step 4: Consider any e~E, with d(e ,e )<  e where F. is defined by (7.12). Let h be the 
e-optimal policy function. Then 

h3(x) < x < h(x) < hE(x) (7.16) 
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T o  see Step 4, consider  the sequences  {x~}~ and {x~'}~ defined in Step 3. Since 
we conc luded  that {x'/}~ is an e -program which does  not belong to Y, we must  have  

max Ix~' - xtl < (1/32). Thus,  by Step 1, we have 
t =  1 , 2 , 3  

. . . . . .  - (1/32) < " -  (1/16) (7.17) x 3 + (1/32) < x o < x 1 x 2 

N o w  for any s, t _> 0, (x" - x'/) = [2x'~ + (1 - 2)x] - [2x' t + (1 - 2)x]  = 2(x'~ - x't). 
Thus,  using, in turn, s = 1, t = 0; s = 2, t = 1; and s = 0, t = 3; and (7.17), we get 

. . . .  ( 7 . 1 8 )  X 3 < X 0 "(  X 1 < X 2 

Since h is the e -opt imal  pol icy function,  and {x't}~ ~ the e-opt imal  program from x, 
(7.18) yields (7.16). 

We  can n o w  apply the Li -Yorke  theorem (Theorem 2.1) to  the dynamica l  system 
(J, h) where J = [0 ,2 ]  and h is the e-opt imal  pol icy funct ion for e~E satisfying 
d(e, e) < ~ [and ~ is given by (7.12)]. Given (7.16), (J, h) exhibits topolog ica l  chaos,  
which establishes T h e o r e m  6.1. 
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